

Optimization of scalaBle rEaltime modeLs and functlonal testing for e-drive ConceptS

EUROPEAN COMMISSION Horizon 2020 GV-07-2017 GA # 769506

Deliverable No.	D6.2	
Deliverable Title	Report on E-motor, control and inverter design & testing (UCCL 4)	
Deliverable Date	2020-11-30	
Deliverable Type	REPORT	
Dissemination level	Confidential – member only (CO)	
Written By	Mathieu Sarrazin (SIE-NV), Raul Vazquez Estrada (FHJ), Thorsten Fischer (AVL-SFR), Alessandro Colla & Horst Pfluegl (AVL), Damijan Miljavec (UL), EL Hassan Ourami, Kazusa Yamamoto (VALEO), Aida Preda (FHJ), Alfred Steinhuber (FHJ)	
Reviewed by	Matthieu Ponchant (SIE SAS) Raul Estrada (FHJ)	2020-11-23 2020-11-25
Approved by	Horst Pfluegl (AVL) – Project Coordinator	2020-11-30
Status	Final	2020-11-30

Change log:

No	Who	Description	Date
0	Mathieu Sarrazin	Initial draft and structure of document	6.12.2019
1	Mathieu Sarrazin	Update draft	22.01.2020
2	Thorsten Fischer	Input UC 4.3	03.07.2020
3	Damijan Miljavec	Input UC4.5	02.10.2020
4	El-Hassan Ourami	Input UC4.1	20.10.2020
5	Raul Estrada	Input UC4.2	22.10.2020
6	Mathieu Sarrazin	Formatting layout and structure	27.10.2020
7	Alessandro Colla &	Input UC 4.4	20.11.2020
	Horst Pfluegl		
8	Mathieu Sarrazin	Text and layout corrections	23.11.2020
9	Matthieu Ponchant	Deliverable review	23.11.2020
10	Raul Estrada	Deliverable review	25.11.2020
11	Mathieu Sarrazin	Review feedback consideration and integration	29.11.2020

Publishable Executive Summary

Deliverable D6.2 focuses on use case cluster 4 'e-motor, control and inverter design & testing' (Figure 0-1). The high energetic efficiency and, therefore, the attractiveness of an electric powertrain lies mainly in the traction unit: e-motor and inverter. A well-designed electric powertrain can be twice as efficient as the powertrain with a conventional combustion engine. Moreover, a second relevant aspect is the flexibility in terms of volume that can be achieved with an e-traction unit. This is made possible above all using of new materials in the electric motor and inverter, as well as by higher frequencies and better integration of the components. These are two good reasons why electric vehicles are already showing strong growth rates, which is in the interest of all parties involved.

However, shortening the development time of electric motors, inverters and controls is an implicit market requirement that can be derived from the above. Therefore, when designing, implementing and testing these components, all necessary aspects must be considered in order to achieve the best possible result in the first design: electrical, mechanical, thermal, magnetic and control engineering. However, all aspects are difficult to evaluate in one single test environment and, therefore, require research into new methods and test approaches that allow efficient optimization and verification in different phases of development within different test environments was needed.

All activities towards the achievement of the above-mentioned objectives are mainly use case driven and as such developments within each use case contributes to the achievement of one or more overall project targets. In order to make sure that the project objectives will be achieved, OBELICS introduces industrial and prospective use cases to apply and prove new advanced testing and simulation methods and tools.

Within the OBELICS project, the Use Case Cluster 4 (UCC4) has been dedicated to "*E-motor, control and inverter design & testing*" in five different Use Cases which all together have mainly contributed to the reduction of the development process of inverters and e-motors. The five considered Use cases (UCs) are UC4.1 '20kHz inverter behavior testing and investigation', UC4.2 'Advanced inverter architecture, design and testing', UC4.3 'High-frequency inverter design and testing', UC4.4 'E-motor controller layout and validation with high-fidelity models ' and UC4.5 'Multivariate high fidelity models for e-motors'.

Figure 0-1: UCC OBELICS overview with a specific D6.2 focus on UCC4

UCC4 has an average improvement of 72.8%; which goes beyond the 40% project objective. Moreover, one UC contributes to improve the vehicle efficiency by 20%, as target by the project. Finally, the safety target was not directly evaluated in this use case cluster.

8 Acknowledgement

The author(s) would like to thank the partners in the project for their valuable comments on previous drafts and for performing the review.

Project partners:

Partner	Partner organization name	Short Name
no.		
1	AVL List GmbH	AVL
2	Centro Richerche Fiat SCpA	CRF
3	FORD Otomotiv Sanayi Anonim sirketi	FO
4	Renault Trucks SAS	RT-SAS
5	AVL Software and Functions GmbH	AVL-SFR
6	Robert Bosch GmbH	Bosch
7	SIEMENS INDUSTRY SOFTWARE NV	SIE-NV
8	SIEMENS Industry Software SAS	SIE-SAS
9	Uniresearch BV	UNR
10	Valeo Equipements Electroniques Moteurs	Valeo
11	Commissariat à l'Energie Atomique et aux Energies	CEA
	Alternatives	
12	LBF Fraunhofer	FhG-LBF
13	FH Joanneum Gesellschaft M.B.H.	FHJ
14	National Institute of Chemistry	NIC
15	University Ljubljana	UL
16	University Florence	UNIFI
17	University of Surrey	US
18	Das Virtuelle Fahrzeug Forschungsgesellschaft	VIF
	mbH	
19	Vrije Universiteit Brussel	VUB

Copyright ©, all rights reserved. This document or any part thereof may not be made public or disclosed, copied or otherwise reproduced or used in any form or by any means, without prior permission in writing from the OBELICS Consortium. Neither OBELICS Consortium nor any of its members, their officers, employees or agents shall be liable or responsible, in negligence or otherwise, for any loss, damage or expense whatever sustained by any person as a result of the use, in any manner or form, of any knowledge, information or data contained in this document, or due to any inaccuracy, omission or error therein contained.

All Intellectual Property Rights, know-how and information provided by and/or arising from this document, such as designs, documentation, as well as preparatory material in that regard, is and shall remain the exclusive property of the OBELICS Consortium and any of its members or its licensors. Nothing contained in this document shall give, or shall be construed as giving, any right, title, ownership, interest, license or any other right in or to any IP, know-how and information.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 769506.

The information and views set out in this publication does not necessarily reflect the official opinion of the European Commission. Neither the European Union institutions and bodies nor any person acting on their behalf, may be held responsible for the use which may be made of the information contained therein.