

Unrestricted

Optimization of scalaBle rEaltime modeLs and functIonal testing for e-drive ConceptS

EUROPEAN COMMISSION
Horizon 2020
GV-07-2017
GA # 769506

Deliverable No. OBELICS D3.1

Deliverable Title Standardized model integration

Deliverable Date 2017-12-31

Deliverable Type REPORT

Dissemination level Public (PU)

Written By Matthieu Ponchant (SIE-SAS)
Alberto Barella (CRF)
Georg Stettinger (VIF)
Hellal Benzaoui

2017-10-26
2017-12-07
2017-12-12
2017-12-20

Reviewed by Horst Pfluegl (AVL)
Noshin Omar (VUB)
Mathieu Sarrazin (SIE-NV)
Anish Patil (UNR)

2017-12-18
2017-12-18
2017-12-22
2017-12-27

Approved by Horst Pfluegl (AVL) – Project Coordinator 2017-12-27

Status Final 2017-12-22

GA # 769506 2 / 48
D3.1 – Standardized model integration - PU

Change log:
No Who Description Date
1 Matthieu

Ponchant
D3.1 report creation 2017-10-26

1.1 Matthieu
Ponchant

Content refinement 2017-11-27

1.2 Alberto Barella High performance computing 2017-12-07
1.3 Georg Stettinger Model.CONNECT, FMI/FMU description, co-simulation

heterogeneous integration
2017-12-12

1.4 Matthieu
Ponchant

Final update with comments from all WP3 partners 2017-12-20

1.5 Hellal Benzaoui GSP tool 2017-12-20
1.6 Matthieu

Ponchant
Add conclusion 2017-12-22

1.7 Hellal Benzaoui Add Functional Mock-up For Matlab & Simulink description 2017-12-22

GA # 769506 3 / 48
D3.1 – Standardized model integration - PU

Contents
Contents .. 3

Figures ... 4

Tables... 5

Publishable Executive Summary .. 7

1 Introduction ... 8

2 Simulation tools interfaces .. 9

2.1 Software platform ... 9

2.1.1 LMS Amesim ... 9

2.1.2 Model.CONNECTTM ... 12

2.1.3 Volvo Global Simulation Platform (GSP) ... 13

2.2 FMI/FMU ... 15

2.2.1 Introduction .. 16

2.2.2 FMI for Model Exchange ... 17

2.2.3 FMI for Co-Simulation ... 17

2.2.4 FMI properties .. 18

2.2.5 FMU properties ... 18

2.2.6 FMI use cases .. 18

2.2.7 Comparison of FMI 1.0 and FMI 2.0.. 19

2.2.8 FMU example .. 20

2.3 RT capability .. 21

2.3.1 Description .. 21

2.3.2 RT model examples ... 22

3 Port typing conventions and model identity ... 26

3.1 Model identity ... 26

3.2 Components .. 26

3.2.1 E-motor ... 27

3.2.2 Inverter ... 28

3.2.3 Battery .. 29

3.2.4 Converter DC/DC... 30

3.2.5 Body builder .. 31

3.2.6 OnBC ... 31

3.2.7 Powertrain .. 31

3.2.8 Braking system .. 32

3.2.9 Cooling system .. 32

3.2.10 Heating, Ventilation Air Conditioning (HVAC) .. 33

3.2.11 Energy Management control .. 34

GA # 769506 4 / 48
D3.1 – Standardized model integration - PU

3.2.12 Braking blending control .. 34

3.2.13 Driver .. 35

3.2.14 Powertrain control .. 35

3.2.15 HVAC control .. 35

3.2.16 Predictor supervisor ... 36

4 Computation approaches and heterogeneous couplings stability .. 37

4.1 Model reduction strategies & Model scalability ... 37

4.2 Co-simulation Heterogeneous integration ... 38

4.2.1 Scheduling ... 39

4.2.2 Coupling step size ... 39

4.2.3 Input signal extrapolation ... 40

4.2.4 Coupling Algorithms.. 40

4.3 HPC .. 40

4.3.1 Parallel computing .. 41

4.3.2 Constraints: simulation strategy and operating system ... 41

5 Conclusions .. 44

6 Abbreviations and definition ... 45

7 Risk Register .. 46

7.1 Risk register ... 46

8 Bibliography... 47

9 Acknowledgement... 48

Figures
Figure 2-1: LMS Imagine.Lab Amesim simulation platform ... 9
Figure 2-2: Example of Electric Vehicle thermal management model .. 10
Figure 2-3: power flow chart of Electric Vehicle model .. 11
Figure 2-4: Summary of the interfaces and processes supported by LMS Amesim .. 12
Figure 2-5: Co-Simulation example .. 12
Figure 2-6: Distributed Co-Simulation. .. 13
Figure 2-7: VOLVO Global Simulation Platform content ... 14
Figure 2-8: Architecture for vehicle subsystem modeling ... 14
Figure 2-9: Integration of different domain specific subsystems from different suppliers (Blochwitz & Otter, The
Functional Mockup Interface for Tool independent Exchange of Simulation Models, 2011). 16
Figure 2-10: Model integration using FMI (Blochwitz & Otter, The Functional Mockup Interface for Tool
independent Exchange of Simulation Models, 2011). ... 16

GA # 769506 5 / 48
D3.1 – Standardized model integration - PU

Figure 2-11: FMI for Model Exchange (Blochwitz & Otter, The Functional Mockup Interface for Tool independent
Exchange of Simulation Models, 2011). .. 17
Figure 2-12: FMI for Co-Simulation (Blochwitz & Otter, The Functional Mockup Interface for Tool independent
Exchange of Simulation Models, 2011). .. 17
Figure 2-13: Data flow between the environment and an FMU (The Functional Mock-up Interface Standard). ... 18
Figure 2-14: Standalone configuration (Blochwitz & Otter, The Functional Mockup Interface for Tool independent
Exchange of Simulation Models, 2011). .. 18
Figure 2-15: Tool-based configuration (Blochwitz & Otter, The Functional Mockup Interface for Tool independent
Exchange of Simulation Models, 2011). .. 19
Figure 2-16: Distributed configuration (Blochwitz & Otter, The Functional Mockup Interface for Tool independent
Exchange of Simulation Models, 2011). .. 19
Figure 2-17: FMI example in Model.CONNECTTM (Model.CONNECT™ User Manual). .. 21
Figure 2-18 temporal stability in Real time hardware platform .. 21
Figure 2-19 documentation directory ... 22
Figure 2-20 Simulink driver control model .. 22
Figure 2-21 LMS Amesim powertrain model ... 22
Figure 2-22 LMS Amesim engine model .. 23
Figure 2-23 Dashboard interface ... 23
Figure 2-24 Engine interface .. 24
Figure 2-25: Real-Time Co-Simulation example. ... 24
Figure 3-1: Subsystem identity card. ... 26
Figure 3-2: Generic electric architecture ... 27
Figure 3-3: E-motor .. 27
Figure 3-4: inverter .. 28
Figure 3-5: Nissan leaf battery module ... 29
Figure 3-6: buck converter topology ... 30
Figure 3-7: boost converter topology .. 30
Figure 4-1 level of detail of simulation .. 37
Figure 4-2 model reduction process used during IMROVE project (Thielboger, 2017) ... 38
Figure 4-3: Different possibilities of simulator scheduling for a coupled co-simulation (Benedikt, Zehetner,
Watzenig, & Bernasch, 2011) .. 39
Figure 4-4: Exchange of subsystem data at coupling time instants and definition of time steps. 40
Figure 6-1: OBELICS model based development concept to reduce development and testing efforts. 44

Tables
Table 2-1: Different initialization and semantics of event handling in FMI 2.0 (Blochwitz, New Features of FMI 2.0
and beyond, 2014). .. 19
Table 2-2: Overview of variable classification possibilities (Blochwitz, New Features of FMI 2.0 and beyond,
2014). ... 20
Table 3-1 Inputs/outputs of Emotor .. 28
Table 3-2 Inputs/outputs of inverter ... 29
Table 3-3 Inputs/outputs of battery .. 29
Table 3-4 Inputs/outputs of converter DC/DC .. 30
Table 3-5 Inputs/outputs of body builder ... 31
Table 3-6 Inputs/outputs of OnBC ... 31
Table 3-7 Inputs/outputs of Powertrain .. 31
Table 3-8 Inputs/outputs of braking system ... 32
Table 3-9 Inputs/outputs of cooling system .. 32

GA # 769506 6 / 48
D3.1 – Standardized model integration - PU

Table 3-10 Inputs/outputs of HVAC ... 33
Table 3-11 Inputs/outputs of energy management control .. 34
Table 3-12 Inputs/outputs of braking blending control .. 34
Table 3-13 Inputs/outputs of thermal control... 35
Table 3-14 Inputs/outputs of Powertrain control ... 35
Table 3-15 Inputs/outputs of HVAC control .. 35
Table 3-16 Inputs/outputs of predictor supervisor ... 36

GA # 769506 7 / 48
D3.1 – Standardized model integration - PU

Publishable Executive Summary
This deliverable (D3.1) gives the description of generic EV components model connectivity, simulation software
tools and interfaces, computation and coupling strategies.

Providing new industrial tools and methods enabling the support at industrial level of new fully integrated EV
architectures (electric, electronic, thermal, chassis) and designs, OEMs and tier 1 suppliers will be able to push
beyond investigation of another generation of even efficient and affordable electric vehicles. This will enable
new co-engineered optimizations of multiple combined components and controls to achieve higher overall
vehicle performance, for conventional and automated operations

After reviewing available simulation tools interfaces and especially their capabilities to communicate between
them, the FMI 2.0 have been selected to ensure good communication between models. Real-time capability has
also been highlighted because some models must contain scalable components running on real-time platform
for control calibration and validation.

GA # 769506 8 / 48
D3.1 – Standardized model integration - PU

1 Introduction

Electric Vehicle (EV) powertrain design are driven by vehicle power and range goals satisfying regulatory and real
operations, while limiting components costs and insuring competitive production. It investigates key powertrain
component sizing for a dedicated vehicle configuration (usually single motor FWD or dual motor AWD) but
addresses chassis integration and auxiliaries in a later stage. These operations are supported by processes legacy
of 100 years of engine-driven automotive design, leading to significant performances and acceptances issues
when applied to electric vehicles. First, it faces limitation in addressing, at industrial level, innovative powertrain
designs involving more sizing dimensions and operation degrees of freedoms, for a full line-up of different
vehicles configurations. Secondary, late consideration of strongly coupled systems leads to lower vehicle
performance and comfort. Best examples are: a HVAC (impacting vehicle range over 50%) and chassis
integration (brake blending, damping). To set up new processes adapted to EV design, the automotive industry
needs to be supported by a new generation of industrial modelling and simulation tools allowing the studies of
innovative configuration combined with all the relevant systems impacting performances and comfort.

Providing new industrial tools and methods enabling the support at industrial level of new fully integrated EV
architectures (electric, electronic, thermal, chassis) and designs, OEMs and tier 1 suppliers will be able to push
beyond investigation of another generation of even efficient and affordable electric vehicles. This will enable
new co-engineered optimizations of multiple combined components and controls to achieve higher overall
vehicle performance, for conventional and automated operations

GA # 769506 9 / 48
D3.1 – Standardized model integration - PU

2 Simulation tools interfaces

2.1 Software platform

2.1.1 LMS Amesim

2.1.1.1 General description

LMS Amesim offers engineers an integrated simulation platform to accurately predict the multi-disciplinary
performance of intelligent systems. LMS Amesim enables engineers to model, simulate and analyze multi-
physics, controlled systems, and offers capabilities to connect to controls design, helping to assess and validate
control strategies.

LMS Amesim comes with a set of standard and optional libraries of predefined and validated components from
different physical domains: fluids, thermodynamics, electrics, electro-mechanical, mechanics and signal
processing—as well as application libraries— cooling system, air-conditioning, internal combustion engine,
aerospace, etc. Components in the libraries are based on the analytical representation of physical phenomena
(see Figure 2-1).

Figure 2-1: LMS Imagine.Lab Amesim simulation platform

For automotive application, a whole range of component is available for the modeling of all major vehicle
subsystems as well as their integration: internal combustion engines, transmissions, vehicle thermal
management systems, vehicle system dynamics, fluid systems related to engines as well as electrical systems. It
enables to simulate the system performance across the complete mechatronics design cycle process, in order to
optimally balance conflicting key performance attributes (fuel economy / range, drivability, thermal passenger
comfort, etc.). An example of an electrical vehicle model aimed at studying the impact of electric component
temperature during a driving cycle is shown in Figure 2-2

GA # 769506 10 / 48
D3.1 – Standardized model integration - PU

Figure 2-2: Example of Electric Vehicle thermal management model

Performance attribute can be highlighted with customized post processing tool. In this example powertrain
efficiency and power flow can be directly analyzed as shown in Figure 2-3 along driving scenarios. All heat losses
are transferred to components thermal masses, then to cooling circuit.
We can also notice that the battery state of charge estimation is also displayed.

GA # 769506 11 / 48
D3.1 – Standardized model integration - PU

Figure 2-3: power flow chart of Electric Vehicle model

Co-simulation with any software is made possible thanks to the LMS Amesim generic co-simulation capability, as
well as dedicated interfaces and support of Functional Mock-up Interface (FMI).

2.1.1.2 Functional Mock-Up Interface

Since rev13, LMS Imagine.Lab Amesim is able to export (create) and import Functional Mock-up Units for
both Model Exchange and Co-simulation. The current release (rev15) has the following capabilities:

 export FMU for Model Exchange in version 1.0 and 2.0
 import FMU for Model Exchange in version 1.0 and 2.0
 export FMU for Co-simulation in version 1.0 and 2.0
 import (as a master) FMU for Co-simulation in version 1.0 and 2.0

GA # 769506 12 / 48
D3.1 – Standardized model integration - PU

Figure 2-4: Summary of the interfaces and processes supported by LMS Amesim

2.1.2 Model.CONNECTTM

2.1.2.1 Co-Simulation

Model.CONNECTTM is a platform to set up and execute entire mechatronic system simulations, which are
composed of subsystem and component models from multiple model authoring environments. Exemplarily,
a co-simulation setup of a hybrid electric vehicle is shown in Figure 2-5. Models can be integrated based on
standardized interfaces (e.g. Functional Mockup Interface, FMI) as well as specific interfaces to a wide
range of well-known simulation tools especially for the automotive industry (Model.CONNECT™ User
Manual).

Figure 2-5: Co-Simulation example

Model.CONNECTTM supports the user in organizing system model variants. These variants may describe different
configurations of the system under investigation as well as different testing scenarios and testing environments.

The model execution is supported in two flavors, which can also be combined:

 Model integration based on models that are provided as executable libraries (FMI for Co-Simulation or
Model Exchange, as well as compiled MATLAB/Simulink models). Such model configurations can be
executed in one process.

GA # 769506 13 / 48
D3.1 – Standardized model integration - PU

Currently the following model interfaces are supported: AVL fmi.LAB, AVL BOOSTTM, AVL FIRETM, AVL
CRUISETM, AVL CRUISETM M, FMU, AVL VSMTM, Vires VTD, IPG CarMaker.

 Tool-coupling based on the ICOS technology, which is a distributed co-simulation platform with a wide
variety of supported simulation tools, industry-leading co-simulation algorithms and the possibility to
connect real-time systems to the co-simulation. All tool-interface (ICOS) elements are running as
individual processes, which interact by using inter-process communication.

Currently, the following ICOS tool interfaces are supported: ICOS Custom, ICOS Real Time, ICOS CAN,
MSC Adams, LMS Amesim, IPG CarMaker4SL, Mechanical Simulation Corp. CarSim, Dassault Systems
Dymola, Mentor Graphics Flowmaster, Gamma Technologies GT-SUITE, Java, Magna KULI, National
Instruments LabVIEW, Mathworks MATLAB/Simulink, Microsoft Excel, Modelica Association Open
Modelica, Synopsys SaberRD, Dassault Systems SIMPACK, ESI SimulationX.

Model.CONNECTTM supports local and distributed co-simulation i.e. this allows the connection of different
operating systems on distributed resources, see Figure 2-6. To perform such a distributed co-simulation a
running remote server on each host is required to connect different simulation tools on different computers.
Furthermore, all involved host computers can have their individual operating system (Model.CONNECT™ User
Manual).

Figure 2-6: Distributed Co-Simulation.

2.1.3 Volvo Global Simulation Platform (GSP)

2.1.3.1 General description
Volvo Global Simulation Platform is the Volvo Group common repository of vehicle models, component
simulation model, utilities and tools (see Figure 2-7). The common database (GSPDB) has a high standard to
ensure traceability and quality assurance. GSP uses common guidelines and unified model structure in order to
facilitate sharing and reuse of model components and data. It is based on MATLAB/SIMULINK which gives
transparency and efficient integration with other systems and processes.

GA # 769506 14 / 48
D3.1 – Standardized model integration - PU

Figure 2-7: VOLVO Global Simulation Platform content

Vehicle system models developed in this simulation platform are designed with respect to the vehicle modular
architecture standard (VMA). Moreover, modeling of vehicle subsystems (engine, transmission …) is also
performed with respect to a generic structure, similar to the one described in the Figure 2-8.

Figure 2-8: Architecture for vehicle subsystem modeling

With GSP, the Volvo Group has one common interface for analysis and evaluation of the product attributes; fuel
consumption and performance of vehicles, emissions, etc. and also common standards and guidelines to allow
share and reuse of models and tools. The Global Simulation Platform is divided into following main parts:

 GSP database

 Tools (standalone) with user interface

2.1.3.2 GSP Database
This GSP database core is able to manage all files need to the GSP and consists of different libraries of vehicle
and system models, data files, simulation interface and tools.

Model library: this library contains vehicle sub-system models and complete vehicle system model organized in
three parts:

 Road and environment models

 Driver models

 Vehicle system model: This one consists of the integration of the following key sub-systems:

o Engine

o Clutch

o Transmission

GA # 769506 15 / 48
D3.1 – Standardized model integration - PU

o Mechanical auxiliaries

o Axle

o Wheel

o Chassis

o Battery (LV)

o Energy Storage system (HV battery, …)

o Motor drive system

o Cooling system

o Etc. …

Simulation interfaces: these interfaces enable following applications:

 Vehicle application definition and system configuration

 Road and environment specification

 Simulation execution

2.1.3.3 TOOLS
The GST tool (Global Simulation Tool) is one example of standalone tool that is developed from GSPDB. This tool,
dedicated to complete vehicle simulation for feature analysis (fuel economy, performances, etc.) is available to
everybody inside Volvo, easy to use regarding its Human-Machine Interface (HMI).

2.1.3.4 Functional Mock-up Interface

From release 2017b, Mathworks’ solutions support directly the import of simulation models compiled with the
FMI standard. The FMU block from Simulink automatically selects the FMU mode based on the existing FMU you
want to import:

 Co-simulation to integrate FMUs that implement an FMI Co-Simulation Interface. These FMUs may
contain local solvers be used for tool coupling

 Model exchange to integrate FMUs that implement an FMI Model Exchange Interface. These FMUs do
not contain local solver. Instead, these FMUs inherit solvers from Simulink.

This FMU block supports FMI versions 1.0 and 2.0. For FMI version 2.0, if an FMU contains both Co-Simulation
and Model Exchange elements, the block detects this and prompts the user to select the mode to operate in. An
FMU block in Simulink can be used as other Simulink blocks. These blocks support Normal and Accelerator
modes.

For previous Matlab® releases, a specific toolbox is necessary to import FMU components in Simulink®
environment or to build FMU component from Simulink® models. The FMI toolbox for MATLAB® and SIMULINK®
can manage FMU components within Simulink environment. This product is distributed by the Modelon
Company and this release supports the FMI standard specification 1.0 and 2.0. The FMI library once installed in
the Simulink environment is made of two blocks that manage the import of FMU models for model exchange
and co-simulation. The FMI toolbox for MATLAB® and SIMULINK® supports HIL simulations on DSPACE DS 1006
systems.

2.2 FMI/FMU

GA # 769506 16 / 48
D3.1 – Standardized model integration - PU

2.2.1 Introduction

The interface of a third party simulation tool is typically a very specific implementation. For that reason the so-
called Functional Mock-up Interface (FMI) was designed within the Modelisar project1. This FMI represents a tool
independent standard, which supports data exchange between different simulation tools. By using a
combination of xml-files and compiled C-code a black-box exchange is possible without sharing knowledge of the
system/model implementation (The Functional Mock-up Interface Standard).

A complex mechatronic system like a vehicle is often separated in the several subsystems. Typically, these
subsystems are modelled in different domain specific simulation tools by different suppliers e.g.: LMS Amesim
for the vehicle dynamics and Dymola for the cooling system. The big challenge of the OEM is to integrate many
different tools to simulate the entire vehicle, see Figure 2-9.

Figure 2-9: Integration of different domain specific subsystems from different suppliers (Blochwitz & Otter, The Functional
Mockup Interface for Tool independent Exchange of Simulation Models, 2011).

A possible solution for this problem is to use FMI for model definition and data exchange. In this case the OEM
only needs to know the model interfaces so the protection of model IP of supplier is still guaranteed see Figure
2-10.

Figure 2-10: Model integration using FMI (Blochwitz & Otter, The Functional Mockup Interface for Tool independent Exchange of
Simulation Models, 2011).

Due to a missing standard for model exchange and Co-Simulation the FMI 1.0 for Model Exchange was published
in January 2010. Later in October 2010 FMI 1.0 for Co-Simulation followed. Both were developed within
MODELISAR (ITEA2 project). In July 2014 FMI 2.0 for Model Exchange and Co-Simulation was published which is
not backwards compatible to FMI 1.0. Currently there is an ongoing development for FMI 2.1.

1 ITEA 2 (Information Technology for European Advancement)

GA # 769506 17 / 48
D3.1 – Standardized model integration - PU

The FMI defines an interface to be implemented by an executable called FMU (Functional Mock-up Unit). The
FMI functions are used by a simulation environment to create one or more instances of the FMU and to simulate
them, typically together with other models. A FMU can have its own solvers (FMI for Co-Simulation) or require
the simulation environment to perform numerical integration (FMI for Model Exchange) (The Functional Mock-
up Interface Standard).

2.2.2 FMI for Model Exchange

The FMI for Model Exchange interface defines an interface to the model of a dynamic system described by
differential, algebraic and discrete-time equations and to provide an interface to evaluate these equations as
needed in different simulation environments with explicit or implicit integrators and fixed or variable step-size.
The interface is designed to allow the description of large models. Figure 2-11 shows the principle structure.

Figure 2-11: FMI for Model Exchange (Blochwitz & Otter, The Functional Mockup Interface for Tool independent Exchange of
Simulation Models, 2011).

2.2.3 FMI for Co-Simulation

The FMI for Co-Simulation interface is designed both for the coupling of simulation tools (simulator coupling,
tool coupling), and the coupling with subsystem models (which have been exported by their simulators together
with its solvers as runnable code). The goal is to compute the solution of an entire time dependent coupled
systems consisting of subsystems that are continuous in time (model components that are described by
differential-algebraic equations) or time-discrete (model components that are described by difference
equations, for example discrete controllers). From co-simulation point of view the coupled overall system
consists of several subsystems represented by blocks with (internal) state variables x(t) that are connected to
other subsystems (blocks) of the coupled problem by subsystem inputs u(t) and subsystem outputs y(t). During
time integration, the simulation is performed independently for all subsystems restricting the data exchange
between subsystems to discrete communication points. The principle structure is depicted in Figure 2-12.

Figure 2-12: FMI for Co-Simulation (Blochwitz & Otter, The Functional Mockup Interface for Tool independent Exchange of
Simulation Models, 2011).

GA # 769506 18 / 48
D3.1 – Standardized model integration - PU

2.2.4 FMI properties

The two interfaces have large parts in common (The Functional Mock-up Interface Standard), in particular:
 FMI Application Programming Interface (C): All needed equations or tool-coupling computations are

evaluated by calling standardized C-functions.
 FMI Description Schema (XML)

The schema defines the structure and content of an XML file generated by a modeling environment.
This XML file contains the definition of all variables of the FMU in a standardized way. It is then possible
to run the C code in an embedded system without the overhead of the variable definition.

 Note: Depending on the used simulation tool a license is maybe required to run/simulate the FMI (this
means FMI does not necessarily solve the tool licensing issue).

2.2.5 FMU properties

An FMU is distributed in one zip file which contains:
 The FMI Description File (in XML format).
 The C sources of the FMU, including the needed run-time libraries used in the model, and/or binaries for

one or several target machines, such as Windows dynamic link libraries (.dll) or Linux shared object
libraries (.so). The latter solution is especially used if the FMU provider wants to hide the source code to
secure the contained know-how or to allow a fully automatic import of the FMU in another simulation
environment.

 Additional FMU data (like tables, maps) in FMU specific file formats.

A schematic view of an FMU is shown in Figure 2-13:

Figure 2-13: Data flow between the environment and an FMU (The Functional Mock-up Interface Standard).

2.2.6 FMI use cases

Figure 2-14 shows a use case in standalone configuration i.e. all elements of the simulation are loaded as shared
objects and run within one process (in-process). In Model.CONNECTTM all FMUs are co-simulated within one
process by default.

Figure 2-14: Standalone configuration (Blochwitz & Otter, The Functional Mockup Interface for Tool independent Exchange of
Simulation Models, 2011).

GA # 769506 19 / 48
D3.1 – Standardized model integration - PU

Figure 2-15 shows a use case in tool-based configuration i.e. all elements are running as individual processes
(multi-process). In Model.CONNECTTM all tool-interface (ICOS) elements are running as individual processes,
which interact by using inter-process communication (IPC). FMUs can also be assigned to the ICOS execution
group i.e. they are handled in the same way as the tool-interface elements.

Figure 2-15: Tool-based configuration (Blochwitz & Otter, The Functional Mockup Interface for Tool independent Exchange of
Simulation Models, 2011).

Figure 2-16 shows a use case in distributed configuration, which represents an extension of the tool based
configuration. Since all elements are running as individual processes, they can be executed on different
machines (distributed multi-process). In Model.CONNECTTM all tool-interface (ICOS) elements can be executed in
this way. To make us of this configuration the FMUs has to be assigned to the ICOS execution group.

Figure 2-16: Distributed configuration (Blochwitz & Otter, The Functional Mockup Interface for Tool independent Exchange of
Simulation Models, 2011).

2.2.7 Comparison of FMI 1.0 and FMI 2.0

An overview of all new FMI 2.0 features is outlined in detail in (Blochwitz, New Features of FMI 2.0 and beyond,
2014). The most important project related differences to FMI 1.0 are discussed in this section like:

 improved initialization,
 semantics of event handling,
 tunable parameters and classification of variables,
 save and restore FMU state,
 detailed dependency information (inputs, outputs, derivatives) and
 an efficient interface to Jacobian matrices.

2.2.7.1 Initialization and Semantics of event handling
Table 2-1 summarizes the improvements of FMI 2.0 concerning initialization and semantics of event handling
compared to FMI 1.0.

Table 2-1: Different initialization and semantics of event handling in FMI 2.0 (Blochwitz, New Features of FMI 2.0 and beyond,
2014).

FMI 1.0 FMI 2.0
Only one function call for initialization Introduction of initialization mode
No iteration during initialization possible Solution of algebraic loops in the same way as in

continuous-time mode
Critical, if initial conditions depend on variables in
algebraic loops

Introduction of event-mode and a semantics for enter,
exit and setting of new discrete state

Initialization Mode:

GA # 769506 20 / 48
D3.1 – Standardized model integration - PU

The initialization mode is used to compute at start time 𝑡0 initial values for continuous-time states, (𝑡0), and for
the previous (internal) discrete-time states, 𝐱d(t0).

Continuous-Time Mode:
The introduced continuous-time mode is used to compute the values of all (real) continuous-time variables
between events by numerically solving ordinary differential and algebraic equations. All discrete-time variables
are fixed during this phase and the corresponding discrete-time equations are not evaluated.

Event Mode:
The event-mode is used to compute new values for all continuous-time variables, as well as for all discrete-time
variables that are activated at the current event instant t, given the values of the variables from the previous
instant. This is performed by solving algebraic equations consisting of all continuous-time and all active discrete-
time equations. In FMI 2.0 there is no mechanism that the FMU can provide the information whether a discrete-
time variable is active or is not active (is not computed) at an event instant. Therefore, the environment has to
assume that at an event instant always all discrete-time variables are computed, although internally in the FMU
only a subset might be newly computed.

2.2.7.2 Tunable parameters and classification of variables
The combination of causality and variability allows a clear classification of all kinds of variables, see Table 2-2.
FMI 2.0 supports a distinction between tunable and fixed parameters.

Table 2-2: Overview of variable classification possibilities (Blochwitz, New Features of FMI 2.0 and beyond, 2014).

Causality Variability
Parameter Constant
Input: output of another model Fixed: constant after initialization
Output: input of another model Tunable: constant between events
Local: not to be used by other models Discrete: changes at event instances
 Continuous

2.2.7.3 Save and restore FMU state
FMI 1.0 is based on an implicate save and restore mechanisms while FMI 2.0 uses explicate function calls for
model exchange and co-simulation. Therefore FMI 2.0 is capable to support iterative co-simulation algorithms,
and model predictive control schemes.

2.2.7.4 Detailed dependency information
Using FMI 1.0, only dependencies of outputs on inputs can be indicated while FMI 2.0 also considers
dependencies of outputs on continuous states and dependencies of derivatives on continuous states and inputs.
This improvements support the detection of algebraic loops and the definition of sparsity pattern of Jacobian
matrices.

2.2.7.5 Efficient interface to Jacobian matrices
FMI 2.0 offers an efficient interface to Jacobian matrices which are needed for e.g. implicit integration methods,
solution of systems of equations resulting from algebraic loops, linearization of FMU and Extended Kalman
filters. The calculation of these Jacobians may be expensive for large models.

2.2.8 FMU example

Model.CONNECTTM supports FMI for model exchange as well FMI for co-simulation (for more information about
the FMI types see section 2.2.3). Figure 2-17 shows an example with both FMI types (Model.CONNECT™ User
Manual): Solver0 and Solver 1 handles FMU Model Exchange 1 and FMU Model Exchange 2 respectively, which
are not directly connected to other Model Exchange FMUs. Solver 2 handles FMU Model Exchange 3 and FMU
Model Exchange 4 which are interconnected and share the same settings. On the contrary the last remaining

GA # 769506 21 / 48
D3.1 – Standardized model integration - PU

FMU Co-Simulation 1 uses its own solver. In conclusion, the Model.CONNECTTM platform ensures maximum
flexibility in using different FMUs with user specific settings.

Figure 2-17: FMI example in Model.CONNECTTM (Model.CONNECT™ User Manual).

2.3 RT capability

2.3.1 Description

The classical conception is that in a hard real-time or immediate real-time system, the completion of an
operation after its deadline is considered useless - ultimately, this may cause a critical failure of the complete
system (see Figure 2-18). A soft real-time system on the other hand will tolerate such lateness, and may respond
with decreased service quality (e.g., omitting frames while displaying a video). Hard real-time systems are used
when it is imperative that an event is reacted to within a strict deadline. Such strong guarantees are required of
systems for which not reacting in a certain interval of time would cause great loss in some manner, especially
damaging the surroundings physically or threatening human lives (although the strict definition is simply that
missing the deadline constitutes failure of the system). For example, a car engine control system is a hard real-
time system because a delayed signal may cause engine failure or damage.

Figure 2-18 temporal stability in Real time hardware platform

Most of real-time models are executed with Simulink. Nevertheless, a model can be exported to a compatible
real-time target by means of an FMU. This specific type of FMU is called “source code FMU” and contains (Figure
2-19):

Model
Calculation time

Real time step

Communication
time

GA # 769506 22 / 48
D3.1 – Standardized model integration - PU

 the necessary source code to compile
 a real-time target-specific pre-compiled library to be linked during the build phase
 a text file containing information about what needs to be compiled

Figure 2-19 documentation directory

2.3.2 RT model examples

2.3.2.1 LMS Amesim model
FMU for real-time in LMS Amesim are compatible with the following real-time target platforms:

 Concurrent SIMulation Workbench, tested on version 6.10.1 gold
 dSPACE SCALEXIO, tested on version R2015b
 ETAS LABCAR (32-bit), tested on version V5.3.1

Below we can find an example of co-simulation with FMU (Amesim models), split into three parts:

 The driving control part is a Simulink model; it is therefore not exported from LMS Amesim:

Figure 2-20 Simulink driver control model

 The powertrain part is an LMS Amesim model that has been exported as a 2.0 FMU for co-simulation:

Figure 2-21 LMS Amesim powertrain model

GA # 769506 23 / 48
D3.1 – Standardized model integration - PU

 The engine part is an LMS Amesim model that has been exported as a 2.0 FMU for co-simulation:

Figure 2-22 LMS Amesim engine model

The co-simulation time steps are set to 10-3s for all models whereas their solver settings are given hereafter:
 Driving control model: first-order Euler method at a step size of 10-3s.
 Powertrain model: first-order Euler method at a step size of 5.10-4s.
 Engine model: first-order Euler method at a step size of 10-4s.

All these models have been exported to a dSPACE SCALEXIO target. Here below are some examples of the user
interface with results:

 Dashboard interface with vehicle speed, gear, engine rpm (Figure 2-23)

Figure 2-23 Dashboard interface

 engine interface with actuator positions, cylinder pressure (Figure 2-24)

GA # 769506 24 / 48
D3.1 – Standardized model integration - PU

Figure 2-24 Engine interface

2.3.2.2 Model.CONNECTTM model
In the context of real-time co-simulation, a distinction between real-time and non-real-time systems is
commonly used. Real-time systems (RT), e.g. in form of real hardware, have to satisfy the so-called hard real-
time conditions (e.g. guaranteed response-time, deterministic runtime behavior). Non-real-time systems (non-
RT) in form of offline simulation models do not satisfy these conditions in general, but have to be executed
faster than real-time for synchronization purposes (Stettinger, Benedikt, Thek, & Zehetner, 2013).

Figure 2-25: Real-Time Co-Simulation example.

Figure 2-25 shows an exemplary setup for a real-time co-simulation configuration: The upper area of Figure 2-25
represents the offline co-simulation part. In this area, the simulation tools are coupled via the offline co-
simulation framework of the Model.CONNECTTM co-simulation platform. Only subsystems which can be
executed faster than real-time can be used for the real-time co-simulation problem due to synchronization
purposes. The lower area of Figure 2-25 shows the coupling of real-time systems (real hardware) via the Real-
Time Co-Simulation framework of Model.CONNECTTM. For a real-time co-simulation both levels of interaction

GA # 769506 25 / 48
D3.1 – Standardized model integration - PU

have to be connected via special coupling- and error-correction methods. This ensures the required hard real-
time behavior of the resulting overall system. Currently, Model.CONNECTTM supports CAN as well as UDP
communication to connect real-time systems to the offline co-simulation part.

The main problems of real-time co-simulations are the so-called round trip-times. They occur in closed-loop
systems due to finite communication-, computation- or data-processing-times. From a control engineering point
of view these dead-times can cause critical problems concerning the stability of the system. They lead to
oscillations and in the worst case to an unstable closed loop behavior. In either case a distorted picture of the
real system as a whole is generated. Furthermore data-losses (e.g. caused by data-collisions) as well as noisy
coupling signals (originating form real sensors) complicate the coupling process. For that reason special coupling
algorithms are available which can compensate this disturbing effects (Stettinger, Benedikt, Thek, & Zehetner,
2013), see section 4.2.4.

GA # 769506 26 / 48
D3.1 – Standardized model integration - PU

3 Port typing conventions and model identity
3.1 Model identity

Figure 3-1 shows a kind of template to share the most information for each subsystem, which is needed to setup
a co-simulation. So, this template acts as a kind of subsystem-identify card (SIC). For interconnecting different
subsystems from different domains, a clear interface definition is mandatory i.e. this interface definition includes
all present in- and outputs of the specific subsystems to ensure a correct interaction with other subsystems in
terms of signal flow.

Apart from that, simulation tool specific information like numerical solver information is important for the
correct configuration of the co-simulation. This information is used to define correct coupling time-steps for
interaction with other involved subsystems. For real-time co-simulations, the required real-time capability must
be ensured. Furthermore, the target hardware information is essential to setup the real-time co-simulation.
Especially, the used communication medium and the communication step-size need to be specified.

Figure 3-1: Subsystem identity card.

The focus in this project is on the electric components. Nevertheless, the complete interface has to be described
in order to check the interaction between all subsystems. 16 different subsystems have been defined. For each
of them dedicated inputs and outputs have been specified to insure the consistency between several levels of
the model (scalability) but also to anticipate integration in the complete vehicle model.

3.2 Components

Figure 3-2 shows a generic electric vehicle architecture. In this project the focus is on the electrical components
(inverter, Emotor and battery), but other subsystem have also to be taken into account:

 the cooling circuit,
 the auxiliaries,
 the driveline,

GA # 769506 27 / 48
D3.1 – Standardized model integration - PU

 the controls

We can observe a lot of physical connections between all these subsystems:

 Electrical connections
 Mechanical connection
 Thermal connection (heat transfer, heat exchangers)
 Control signals

Figure 3-2: Generic electric architecture

All these connections have to be identified for each subsystem in order to ensure the consistency during the
vehicle integration. Furthermore, several level of modeling at least for electrical components must be
developed. Indeed, a lot of physical effects are required in detailed models implying longer simulation time,
which could not be real-time compatible. Faster models have so to be created to be real-time compatible based
on first models.

3.2.1 E-motor

3.2.1.1 Level of modeling
Three technologies of E-motor (Figure 3-3) are considered in this project:

 Wound Rotor Synchronous Motor (WRSM)
 Permanent Magnet Synchronous Machines (PMSM)
 Induction machine (IM)

Figure 3-3: E-motor

2 levels of model have to share the maximum common parameters but also inputs/outputs:
 Multi-physical approach coupling magnetic, electric, thermal and mechanical domains being

implemented for a detailed physical inverter
 Real-time compatible model sharing most of the information with the physical model and running with

real-time compatible inverter model for vehicle simulation
The second model is derived from the first one by following the model reduction process (4.1).

GA # 769506 28 / 48
D3.1 – Standardized model integration - PU

3.2.1.2 Port typing convention

Table 3-1 Inputs/outputs of Emotor

Variables Name I/O Type Unit dimension
Motor speed Omega_EM Input physical rad/s 1
Motor coolant temperature T_cool_EM Input physical degC 1
Motor voltage U_EM Input physical V n2
Motor torque Tq_EM Output physical Nm 1
Motor power losses P_loss_EM Output physical W 1
Motor heat rejection to coolant P_cool_EM Output physical W 1
Motor temperature T_EM Output physical degC n3
Motor current I_EM Output physical A n4
Motor current phase I_phase_EM Output physical deg 3
Motor maximum generative torque Tq_max_rege_EM Output signal Nm 1
Motor maximum boost torque Tq_max_boost_EM Output signal Nm 1

3.2.2 Inverter

3.2.2.1 Level of modeling
The inverter (Figure 3-4: inverter) has two main functions:

 Convert DC current to AC current
 Control motor torque

This system is mainly made of semiconductor components based on Silicon (Si). New semiconductor material
could be investigated in this project like Silicon Carbide (SiC) and Gallium Nitride (GaN).

Figure 3-4: inverter

2 levels of models have to share the maximum common parameters but also inputs/outputs:

 detailed multi-domain and multi-physical Power Electronics Converters (inverter, converter) being
connected with detailed physical motor

 Real-time compatible model sharing most of information with physical model and running with real-
time motor model for vehicle simulation

2 highly dependent of level of modeling and also the inverter (see detailed model) -->d/q , abc … usually 2 or 3
3 if motor thermal masses are split (e.g. stator and rotor considered separately) or not.
4 highly dependent of level of modeling and also the inverter (see detailed model) -->d/q , abc … usually 2 or 3

GA # 769506 29 / 48
D3.1 – Standardized model integration - PU

The second model is derived from the first one by following the model reduction process (4.1).

3.2.2.2 Port typing convention

Table 3-2 Inputs/outputs of inverter

Variables Name I/O Type Unit dimension
Inverter AC Voltage request U_AC_Inv_rq Input signal V 1
Inverter AC current I_AC_Inv Input physical A n5
Inverter DC voltage U_DC_Inv Input physical V 1
Inverter coolant temperature T_cool_Inv Input physical degC 1
Inverter AC voltage U_AC_Inv Output physical V n6
Inverter DC current I_AC_Inv Output physical A 1
Inverter power losses P_loss_Inv Output physical W 1
Inverter heat rejection to coolant P_cool_Inv Output physical W 1
Inverter temperature T_Inv Output physical degC n7

3.2.3 Battery

3.2.3.1 Level of modeling
Li-Ion battery (Figure 3-5) is a very complex system with different scale level phenomena. Current
electrochemical models are based on Newman’s approach, which is not able to consider such phenomena (R.
Malik, 2013) (W. Dreyer, 2010) (J. Lim, 2016).

Figure 3-5: Nissan leaf battery module

2 levels of models have to share the maximum common parameters but also inputs/outputs:

 Electro-chemical model based on a new approach with thermal influence and ability to predict thermal
runaways

 Real-time compatible model sharing most of information with physical model and running with for
vehicle simulation

The second model is derived from the first one by following the model reduction process (4.1).

3.2.3.2 Port typing convention

Table 3-3 Inputs/outputs of battery

Variables Name I/O Type Unit dimension

5 highly dependent of level of modeling and also the motor (see detailed model) -->d/q , abc … usually 2 or 3
6 highly dependent of level of modeling and also the motor (see detailed model) -->d/q , abc … usually 2 or 3
7 if inverter thermal masses are split (e.g. each semiconductor considered separately) or not.

GA # 769506 30 / 48
D3.1 – Standardized model integration - PU

Battery current I_Bat Input physical A 1
Battery maximum power P_Bat_max Input signal W 1
Battery minimum power P_Bat_min Input signal W 1
Battery coolant temperature T_cool_Bat Input physical degC 1
Battery voltage U_Bat Output physical U n8
Battery state of charge SOC_Bat Output signal % 1
Battery state of health SOH_Bat Output signal % n9
Battery power losses P_loss_Bat Output physical W 1
Battery heat rejection to coolant P_cool_Bat Output physical W 1
Battery temperature T_Bat Output physical degC n10

3.2.4 Converter DC/DC

3.2.4.1 Level of modeling
DC/DC converter is used to transfer current between two electric circuits with different voltages. Buck and boost
converters (Figure 3-6, Figure 3-7) are widely used to, respectively, decrease and increase the output voltages.

Figure 3-6: buck converter topology

Figure 3-7: boost converter topology

2 levels of models have to share the maximum common parameters but also inputs/outputs:

 detailed multi-domain and multi-physical Power Electronics Converters (inverter, converter)
 Real-time compatible model sharing most of information with physical model and running for vehicle

simulation
The second model are derived from the first one by following the model reduction process (4.1).

3.2.4.2 Port typing convention

Table 3-4 Inputs/outputs of converter DC/DC

Variables Name I/O Type Unit dimension
DC/DC coolant temperature T_cool_DC Input physical degC 1
DC/DC coolant flow Q_cool_DC Input physical l/min 1

8 Several voltage could be considered (e.g. maximum/minimum/average)
9 Several SOH could be considered (e.g. pack/module/cell)
10 Several temperature could be considered (e.g. pack/module/cell)

GA # 769506 31 / 48
D3.1 – Standardized model integration - PU

DC/DC power losses P_loss_DC Output physical W 1
DC/DC heat rejection to coolant P_cool_DC Output physical W 1
DC/DC temperature T_DC Output physical degC 1

3.2.5 Body builder

3.2.5.1 Level of modeling
Only one level of modeling supplying additional electrical load to the electrical circuit is considered.

3.2.5.2 Port typing convention

Table 3-5 Inputs/outputs of body builder

Variables Name I/O Type Unit dimension

Body Builder coolant temperature T_cool_BB Output physical degC 1
Body Builder power losses P_loss_BB Output physical W 1
Body Builder temperature T_BB Output physical degC 1

3.2.6 OnBC

3.2.6.1 Level of modeling
Only one level of modeling supplying additional electrical load to the electrical circuit is considered.

3.2.6.2 Port typing convention

Table 3-6 Inputs/outputs of OnBC

Variables Name I/O Type Unit dimension
OnBC DC voltage U_DC_OnBC Input physical V 1
OnBC coolant temperature T_cool_OnBC Output physical degC 1
OnBC DC current I_AC_OnBC Output physical A 1
OnBC power losses P_loss_OnBC Output physical W 1
OnBC heat rejection to coolant P_cool_OnBC Output physical W 1
OnBC temperature T_OnBC Output physical degC 1

3.2.7 Powertrain

3.2.7.1 Level of modeling
Powertrain component deals with mechanical subsystem of the vehicle from the chassis to the transmission.
Connection with the E-motor is connected to the powertrain as torque supplier. Furthermore, the vehicle speed
and acceleration are transferred to the driver component.

3.2.7.2 Port typing convention

Table 3-7 Inputs/outputs of Powertrain

Variables Name I/O Type Unit dimension
Motor torque Tq_EM Input physical Nm 1
Gear demand (if transmission) Gear_ratio Input signal - 1
K1 state (if transmission) K1 Input signal - 1
Vehicle speed Vveh Output physical m/s 1
Motor speed Omega_EM Output physical rad/s 1
Travel distance distance Output physical m 1
Vehicle acceleration accel Output physical m/s**2 1

GA # 769506 32 / 48
D3.1 – Standardized model integration - PU

Transmission loss (if transmission) P_loss_Trans Output physical W 1
Transmission heat rejection to oil P_cool_Trans Output physical W 1

3.2.8 Braking system

3.2.8.1 Level of modeling
Only one level of modeling supplying braking system for the vehicle simulation is considered, allowing focus on
brake blending.

3.2.8.2 Port typing convention

Table 3-8 Inputs/outputs of braking system

Variables Name I/O Type Unit dimension
Dissipative Braking Torque Tq_Br_d_i Input Physical Nm 1
External Torque Tq_E_r_i Input Physical Nm 1
Wheel Speed W_w_i Input physical rad/s 1
Ref. Cooling Temp T_cool Input physical degC 1
Powertrain Speed W_w_g_i Output Physical rad/s 1
Measured Speed W_w_s_i Output Signal rad/s 1
Wheel Torque Tq_W_i Output physical Nm 1
Pad Temp T_pad_i Output signal degC 1
Disc Temp T_disc_i Output signal degC 1
Consumed Pad Volume V_pad_i Output physical m3 1

3.2.9 Cooling system

3.2.9.1 Level of modeling
The two main functions of the cooling system are:

 the thermal management of all electrical and mechanical component as well as the battery
 the heat supply for cabin comfort

Heat rejection from loss component is transferred to the coolant. Fan and pump are controlled to optimize the
thermal behavior within the cooling loop.
Only one level of modeling supplying cooling circuit compatible for Real-time application is considered for the
vehicle simulation.

3.2.9.2 Port typing convention

Table 3-9 Inputs/outputs of cooling system

Variables Name I/O Type Unit dimension
Battery heater loss P_loss_Bat Input physical W 1
Inverter loss P_loss_Inv Input physical W 1
Motor loss P_loss_EM Input physical W 1
Radiator airflow Airflow-Rad Input physical Kg/s 1
Radiator air inlet temperature Tair-in-Rad Input physical degC 1
Fan AC current I_fan Input physical A 1
Fan AC voltage U_fan Input physical V 1
Fan inlet temperature T_in_fan Input physical °C 1
Fan inlet pressure Pres_in_fan Input physical kPa 1
Pump AC current I_pmp Input physical A 1
Pump AC voltage U_pmp Input physical V 1

GA # 769506 33 / 48
D3.1 – Standardized model integration - PU

Pump Coolant mass flow M_cool_pmp Output physical Kg/s 1
Pump coolant flow Q_cool_pmp Output physical l/min 1
Radiator coolant flow Q_cool_Rad Output physical l/min 1
Coolant temperature in radiator T_cool_in_Rad Output physical degC 1
Coolant temperature out radiator T_cool_out_Rad Output physical degC 1
Coolant temperature in inverter T_cool_in_inv Output physical degC 1
Coolant temperature out inverter T_cool_out_inv Output physical degC 1
Coolant temperature in motor T_cool_in_motor Output physical degC 1
Coolant temperature out motor T_cool_out_motor Output physical degC 1
Coolant pressure in radiator Pres_cool_in_Rad Output physical kPa 1
Coolant pressure out radiator Pres_cool_out_Rad Output physical kPa 1
Coolant pressure in inverter Pres_cool_in_inv Output physical kPa 1
Coolant pressure out inverter Pres_cool_out_inv Output physical kPa 1
Coolant pressure in motor Pres_cool_in_motor Output physical kPa 1
Coolant pressure out motor Pres_cool_out_motor Output physical kPa 1
Coolant pressure in pump Pres_cool_in_pmp Output physical kPa 1
Coolant pressure out pump Pres_cool_out_pmp Output physical kPa 1
Radiator air Pressure drop DP-air-rad Output physical kPa 1
Radiator Cooling capacity P_rad Output physical W 1
Fan speed Speed-fan Input physical rpm 1
Fan outlet pressure Pres_out_fan Output physical kPa 1
Fan flow Q-cool-fan Output physical l/min 1
Fan Power Pow-fan Output physical kW 1
Pump speed Speed_pmp Output physical rpm 1
Pump Power Pow-pmp Output physical kW 1

3.2.10 Heating, Ventilation Air Conditioning (HVAC)

3.2.10.1 Level of modeling
Several models have been investigated from functional to detailed model (especially with cabin). Cabin internal
flows are complex and must be managed with 3D flow. Advanced cabin heating technology will be investigated
like heat pump.

3.2.10.2 Port typing convention

Table 3-10 Inputs/outputs of HVAC

Variables Name I/O Type Unit dimension
Blower position Pos_Blower Input signal - 1
recirculation Recir Input signal % 1
Compressor speed Omega_Comp Input physical rad/s 1
Chiller Inlet coolant temperature Ch_Inlet_coolTemp Input physical degC 1
Chiller Inlet coolant flowrate Ch_Inlet_fr Input physical kg/s 1
Air HV Heater Command Air_Heat_cmd Input signal - 1
Chiller Txv command Ch_cmd Input signal - 1
Evaporator Txv command EV_cmd Input signal - 1
Condenser Inlet air Temperature Cond_in_AirTemp Input physical degC 1
Condenser air flowrate Cond_Air_fr Input physical kg/s 1

GA # 769506 34 / 48
D3.1 – Standardized model integration - PU

Cabin temperature T_Cab Output physical degC 1
Cabin humidity Rh_Cab Output physical % 1
Compressor torque Tq_Comp Output physical Nm 1
HVAC dissipated thermal power W_HVAC Output Physical W 1
Chiller Outlet coolant temperature Ch_Outlet_coolTemp Output physical degC 1
Chiller Outlet coolant flowrate Ch_Outlet_fr Output physical kg/s 1
Condenser Outlet air Temperature Cond_out_AirTemp Output physical degC 1
Head Pressure pHead Output physical bar 1
Evaporator Air Outlet temperature EV_out_AirTemp Output physical degC 1
Air HV Heater Outlet Temperature Heat_out_AirTemp Output physical degC 1

3.2.11 Energy Management control

3.2.11.1 Level of modeling
Only one level of modeling supplying energy distribution between different motors compatible for Real-time
application is considered for the vehicle simulation. Battery state of charge as well maximum and minimum
power are considered to limit the power flow from the battery.

3.2.11.2 Port typing convention

Table 3-11 Inputs/outputs of energy management control

Variables Name I/O Type Unit dimension
Battery maximum power P_Bat_max Input signal W 1
Battery minimum power P_Bat_min Input signal W 1
Battery state of charge SOC_Bat Input signal % 1
Vehicle speed Vveh Input signal m/s 1
Motor speed Omega_EM Input signal rad/s 1
Power req driver P_req Input signal W 1
Power req auxiliary systems P_aux_req Input signal W 1
Power command to the Battery P_batt Output signal W 1
Power command to the EM P_em Output signal W 1
Power command to the Auxilary P_aux Output signal W 1

3.2.12 Braking blending control

3.2.12.1 Level of modeling
Only one level of modeling supplying control for the braking system is considered, compatible for Real-time
application for vehicle simulation. Brake blending between applied torque (e-motor) and conventional actuation
is optimized by also considering the dynamic limitation for applied torques.

3.2.12.2 Port typing convention

Table 3-12 Inputs/outputs of braking blending control

Variables Name I/O Type Unit dimension
Brake Demand BRK_REF_i Input Signal % 1
Electrical Limits ELE_lim_i Input Signal Nm, W 2
BBCPARAM BBC_i Input signal - 4
Functionality Mode FCM_i Input signal - 1
Measured Speed W_w_s_i Input signal rad/s 1

GA # 769506 35 / 48
D3.1 – Standardized model integration - PU

Measured Wheel Normal Load Fn_w_i Input signal N 1
Brake Feedback BRK_FED_i Output Signal % 1
Ext. Torque Demand Tq_bre_i Output signal Nm 1
Dis. Braking Torque Tq_Br_d_i Output physical Nm 1

3.2.13 Driver

3.2.13.1 Level of modeling
Only one level of modeling supplying the overall power request is considered, compatible for Real-time
application for vehicle simulation. Acceleration and braking request are calculated based on vehicle speed and
requested vehicle power.

3.2.13.2 Port typing convention

Table 3-13 Inputs/outputs of thermal control

Variables Name I/O Type Unit dimension
Accelerator pedal Acc_pdl Input signal % 1
Brake pedal B_pdl Input signal % 1
Power request P_req Output signal W 1

3.2.14 Powertrain control

3.2.14.1 Level of modeling
Only one level of modeling supplying control for powertrain is considered, compatible for Real-time application
for vehicle simulation. If transmission is implemented in the vehicle, gear demand and clutch closing have to be
calculated.

3.2.14.2 Port typing convention

Table 3-14 Inputs/outputs of Powertrain control

Variables Name I/O Type Unit dimension
Vehicle speed Vveh Input physical m/s 1
Travel distance distance Input physical m 1
Vehicle acceleration accel Input physical m/s**2 1
Gear demand (if any) Gear_ratio Output signal - 1
K1 state (if transmission) K1 Output signal - 1

3.2.15 HVAC control

3.2.15.1 Level of modeling
Only one level of modeling supplying control for HVAC is considered, compatible for vehicle simulation. Thermal
comfort (cabin temperature and humidity) is controlled by adjusting the compressor speed and blower position.
Air recirculation could be taken into account.

3.2.15.2 Port typing convention

Table 3-15 Inputs/outputs of HVAC control

Variables Name I/O Type Unit dimension
Cabin temperature T_Cab Input physical degC 1
Cabin humidity Rh_Cab Input physical % 1
Compressor torque Tq_Comp Input physical Nm 1

GA # 769506 36 / 48
D3.1 – Standardized model integration - PU

HVAC dissipated thermal power W_HVAC Input Physical W 1
Chiller Outlet coolant temperature Ch_Outlet_coolTemp Input physical degC 1
Chiller Outlet coolant flowrate Ch_Outlet_fr Input physical kg/s 1
Condenser Outlet air Temperature Cond_out_AirTemp Input physical degC 1
Head Pressure pHead Input physical bar 1
Evaporator Air Outlet temperature EV_out_AirTemp Input physical degC 1
Air HV Heater Outlet Temperature Heat_out_AirTemp Input physical degC 1
Blower position Pos_Blower Output signal - 1
recirculation Recir Output signal % 1
Compressor speed Omega_Comp Output physical rad/s 1
Air HV Heater Command Air_Heat_cmd Output signal - 1
Chiller Txv command Ch_cmd Output signal - 1
Evaporator Txv command EV_cmd Output signal - 1

3.2.16 Predictor supervisor

3.2.16.1 Level of modeling
Only one level of modeling supplying information about environment is considered, compatible for vehicle
simulation.

3.2.16.2 Port typing convention

Table 3-16 Inputs/outputs of predictor supervisor

Variables Name I/O Type Unit dimension
Travel distance distance Input physical m 1
Reference vehicle speed xx kms
ahead

Vveh Output physical m/s 1

Road alttitude xx kms ahead Altitude Output physical m 1
Stop time xx kms ahead Time Output physical s 1
Estimated road cycle power
demand xx kms ahead

Power Output physical W 1

GA # 769506 37 / 48
D3.1 – Standardized model integration - PU

4 Computation approaches and heterogeneous couplings stability

4.1 Model reduction strategies & Model scalability

Design phase can be shortened by using same architecture whatever the level of modeling of each component
will be. Conclusion from ASTERICS (FP7) about integrated approach (C. Ricci, 2014) are:

 Interoperability between models at every modeling stage
 System has to be easy upgradeable

The consistency has to be ensured between different levels of modeling. Furthermore numerical stability has to
be guaranteed especially for HiL application.

Physical models are commonly used during design phase of the “V design cycle” (Left side) and are the first step
of modeling activity in model-based development. Based on these system integrated models, some subsystem
has to be reduced, meaning having the capability to run in fixed step with a limited CPU time consumption to be
integrated in real-time platform (HiL). Generally, 3 levels can be found in simulation (see Figure 4-1):

 Quasi-static approach: only steady state outputs are considered in the component model. Such models
are useful for Real time application, but level of accuracy is poor and some physical output could be
missing.

 Low transient approach: quasi-static output and main dynamic are considered. This level offers better
accuracy especially in term of transient behavior. The maximum frequency must comply with
communication time in real time hardware platform (~100 Hz)

 High frequency approach: these models are generally very accurate but require longer CPU time due to
high frequency involved. Such level cannot be directly used in HiL approach.

Figure 4-1 level of detail of simulation

The main objective of the model reduction strategies is to limit the frequency domain of the model to ensure the
numerical stability with higher integration step. Generally, the Euler criteria should be respected:

𝑇 <
1

2 ∙ 𝜋 ∙ min 𝑓

Physical models with high dynamics require very low integration step due to their high frequencies. The
computation takes more time then real time and as a consequence must be replaced by low dynamic or quasi-
static models. Nevertheless the consistency between models have to be preserved meaning the loss of accuracy
should not be critical.

GA # 769506 38 / 48
D3.1 – Standardized model integration - PU

According to the complexity of each subsystem several strategies could be applied:

 Quasi-static model based on physical model could be applied on electrical component (see 3.2.1.1,
3.2.2.1, 3.2.3.1)

 Response Surface Methodology (RSM) (see Figure 4-2)
 Neural Network (RNN)

Figure 4-2 model reduction process used during IMROVE project (Thielboger, 2017)

4.2 Co-simulation Heterogeneous integration

The main task of co-simulation is the holistic simulation of an overall system to determine the global
characteristics of the system. It consists of several subsystems, which are simulated in their domain specific
simulation tools, see Figure 2-5. From an abstract point of view the subsystems, can be considered as black-box
systems with inputs and outputs. Thereby, the overall system is assembled by interconnecting the subsystems
via the inputs and outputs, which ensures the interaction of the involved subsystems in a collaborative manner.
For the simulation of the overall system typically a co-simulation platform is used. In this case the subsystems
run independently from each other and only exchange values at discrete points in time. The two main tasks of
the platform are to define an effective subsystem scheduling for the simulation tools and to handle the occurring
coupling data at specific points in time (Benedikt, Zehetner, Watzenig, & Bernasch, 2011). The co-simulation user
has to define the following settings for each subsystem:

 Subsystem scheduling
 Coupling step-size (for data exchange between subsystems)
 Input signal extrapolation / interpolation

GA # 769506 39 / 48
D3.1 – Standardized model integration - PU

4.2.1 Scheduling

In terms of scheduling, several rules must be obeyed to obtain an efficient configuration of subsystems. The
subsystem scheduling influences the simulation time as well as the accuracy. Furthermore, it is necessary to
simulate the subsystems in signal flow direction and, in the case of internal loops, only the correct scheduling
guarantees the solvability of the whole system. Nevertheless, it is important to reduce the amount of required
extrapolation steps because each extrapolation is associated with a coupling error. Figure 4-3 shows exemplarily
two interconnected subsystems with different scheduling policies.

Figure 4-3: Different possibilities of simulator scheduling for a coupled co-simulation (Benedikt, Zehetner, Watzenig, & Bernasch,
2011)

In case 1, subsystem 1 (hybrid controller) is solved first leading to an extrapolation of its unknown input signal. In
case 2, the electric motor subsystem is solved first and its input signal has to be extrapolated. In both cases the
subsystem models are solved sequentially in time and only one coupling signal has to be extrapolated. For the
parallel case (see case 3), a simultaneous extrapolation of all subsystem inputs is required and thus a larger
coupling error is introduced with distorts the entire system behavior (Benedikt, Zehetner, Watzenig, & Bernasch,
2011).

4.2.2 Coupling step size

In the context of co-simulation, the step-size regarding the internal solver is called micro time-step and is
denoted by the symbol δT, see Figure 4-4. The coupling time instants, where coupling data is exchanged
between the simulation tools, are defined by the specified coupling time-step ΔT. The coupling data exchange
between subsystems is performed by the co-simulation platform. In practice, an efficient coupling time-step is
mostly determined using domain-specific experts or by executing numerous trial and error tests. In fact, by non-
iterative co-simulation applications the coupling time-step is the most important factor to achieve accurate
simulation results (Benedikt, Zehetner, Watzenig, & Bernasch, 2011).

GA # 769506 40 / 48
D3.1 – Standardized model integration - PU

Figure 4-4: Exchange of subsystem data at coupling time instants and definition of time steps.

4.2.3 Input signal extrapolation

According to the specified subsystem scheduling some subsystem inputs have to be extrapolated to perform the
co-simulation. Extrapolation of coupling quantities represents a prediction of simulation results over the
subsequent coupling time-step at defined coupling time instants, see Figure 4-4. In this context extrapolation is a
kind of estimation and thus a coupling error is introduced. The introduced error depends strongly on the
extrapolation technique and on the applied coupling step size. In co-simulation applications typically polynomial
extrapolation techniques of low order are used such as zero order hold (ZOH), first order hold (FOH) or second
order hold (SOH) extrapolation (Benedikt, Zehetner, Watzenig, & Bernasch, 2011), see Figure 4-4.

4.2.4 Coupling Algorithms

The co-simulation platform Model.CONNECTTM also contains algorithms to compensate distorting coupling
errors introduced by extrapolation. The so-called NEPCE (Nearly Energy Preserving Coupling Element) for non-
iterative co-simulation compensates such extrapolation errors. This approach produces some kind of energy
preservation. Furthermore it is possible to eliminate high frequent signal components in the coupling signals
with predefined filters (in general low-pass filter) (Benedikt & Hofer, Guidelines for the Application of a Coupling
Method for Non-iterative Co-simulation, 2013).

Besides NEPCE, especially for real-time co-simulations special model-based coupling algorithms (ACoRTA
coupling) can be used to ensure stable entire system simulations. These model-based coupling algorithms are
designed to cope with typical coupling imperfections caused by the incorporation of real-time systems like
communication time-delays, data-losses and noisy coupling signals (Stettinger, Benedikt, Thek, & Zehetner,
2013).

4.3 HPC

In the last decades, the design world has been deeply transformed by computer science. Many industries,
including automotive, rely on this technology to develop new products and test processes virtually, thus the
need of physical prototypes has been reduced.
The virtual validation is overtaking the physical one in many areas and this trend is constantly accelerating. The
need of more reliable simulations means more complex virtual models and in turn this means that the
computational power needed for each simulation is drastically increasing. The solution to limit the time needed
by numerical simulations has been increased the computational power by parallelization.
The aim of High Performance Computing (HPC) is to provide the computational power for the simulations
needed for virtual design and validation phases. It is possible to connect together many ordinary computers to
obtain a single system, called 'cluster'. The computational power of the all the computers, called 'nodes', is
aggregated, making it possible to solve much more complex problems than one could solve on a typical desktop

GA # 769506 41 / 48
D3.1 – Standardized model integration - PU

computer or workstation. The components of a cluster are connected to each other through a network
(connection high speed is a key requirements) and each node runs on its own operating system. In most
applications, all of the nodes use the same hardware and the same operating system.
Traditionally, the computational power needed by the numerical simulations is handled by the central
processing unit (CPU) of a node. A new and very promising approach, is to handle all or part of these
computations through the graphical processing unit (GPU). CPUs are very efficient for sequential calculation but
creates difficulties parallelized computations with high numbers of CPUs, whereas GPUs are attractive due to
their high floating-point operation capability and their high energy-efficiency for highly parallel computations.
Some clusters are built combining GPUs and CPUs so one can optimize the computation in a way that exploits
both the GPU and CPU strengths while avoiding their weaknesses. More and more computational clusters are
equipped with GPUs or uses hybrid technologies.
A large company that heavily relies on numerical simulations for its design and validation process will typically
need a cluster made up by hundreds of nodes with each node having a number of CPU cores of the order 32

4.3.1 Parallel computing

To fully exploit the computational power provided by a modern HPC cluster, the software that will perform the
numerical simulation needs to be designed using parallel computing paradigms. Parallel computing is a type of
computation in which many calculations are executed at the same time. Large simulations can be partitioned
into smaller ones that can be run simultaneously. A parallel software normally manages different processes that
are computed, independently, but continually share data with each other. The communication is granted by a
properly designed network. Parallel programming relies on two main pillars: efficient use of the computational
power available on single nodes and efficient communications of inter-dependent data among different nodes
(and within the cores).
Ideally the performance of a parallel program should be linearly dependent on the available computational
power: doubling the computational power, the performance of the software should be doubled. However, this is
hardly the case. The reason must be searched in the cost of communication among the nodes that is extremely
high. The scalability (also referred to as the scaling efficiency) is a common measure of the parallel performance
of a software. This indicator shows how efficient an application is when the number of parallel processing
elements (CPUs, cores, etc.) is increased. Typical software for industrial simulation will exhibit good scalability
also when running on hundreds of cores.

The use of HPC is limited to applications that require high computing performances; focusing the attention to
the scope of OBELICS, the main application that will need such amount of resources will be the 3D thermal
simulation because it relies on data obtained from Computational Fluid Dynamics analysis. The 0D-1D solver can
partially benefit from the parallelization but the few processors of a high-end personal computer are already
enough. There will be a significant gap between the time needed from 1D and 3D simulation so specific
simulation strategies will be developed. Increasing the number of processors used by the CFD solver could not
be a solution because the constraints on the maximum number of available CPUs, the scalability (80-95% of
efficiency should be expected till 500 cores but, further increasing the number of cores, downgrades it) and the
time needed for initialization, I/O writing and saving time.
Despite the promising properties of the GPU based calculations, this technology will not be used during this
project due the limited number of software that are fully compatible.

4.3.2 Constraints: simulation strategy and operating system

The HPC use is necessary for the 3D simulations only so the compatibility of the different software with this kind
of technology is relevant for the subtask 3.2.2. How the software will communicate and in which way would
mostly depend on the 0D-1D-3D coupling developed strategy.
To determine the possible synergies among the different kind of simulation, hereunder a brief summary to
highlight the main roles of each kind of analysis in a thermal simulation is given:

 0D-1D analysis: effectively simulate components and subsystems of an electric vehicle (battery, electric
motors, HVAC), replicating how they work and which I/O are required or provided. They could be

GA # 769506 42 / 48
D3.1 – Standardized model integration - PU

mutually linked to simulate the behavior of a whole vehicle in real driving conditions. Focusing on the
thermal management, this kind of numerical simulations can provide information about the
temperatures of each component and its thermal emission

Where the 0D-1D simulations lack is the interaction with the external environment that can only be considered
extensively simplified (this includes also the mutual interaction between components). The 3D simulations will,
on one hand, fulfill this shortage and, on the other, benefit of more reliable data (most of all in dynamic
condition typical of unsteady simulations, like in a drive-cycle) coming from the mono-dimensional analysis.
The 3D thermal simulations usually relies on different kinds of technologies in order to describe all the
mechanism of the thermal exchange:

 Computational Fluid Dynamics (CFD): it is used to determine the main parameters that rule the heat
exchanged by convection. Simulating the flow field around a vehicle and its parts provides the value of
heat transfer coefficient (H) and the local fluid temperature around the surface of the components
(normally the simulation is limited to the external part of each component to limit both the
computational cost and the complexity: no internal structure is modeled)

 Thermal solver: performs the full thermal analysis simulating the heat exchanged by conduction and
radiation. It exploits the data coming from the CFD to compute the heat exchanged by convection. For
the same reasons seen for the CFD also in this case the internal structure of components is ignored or
approximated (detailed geometry, materials and other properties are needed). Many thermal solver
includes 1D codes to simulate the internal fluid. The thermal solver can be embedded in the CFD one,
Conjugate Heat Transfer, or stand alone, exploiting technologies as the Boundary Element Method.

Both CFD and thermal solver need the use of HPC, but, between the two, the former has the most important
computational weight and requires more time to run.
The benefits originated by the 1D-3D coupling, the kind/volume of data exchanged depends on the integration
strategy as well as the working constraints.
Supposing to simulate a drive-cycle, while the subsystems simulations and the 3D thermal one can be fully
transient (even with different discretization times, ∆t), the same approach cannot be used by the CFD because of
the resources (and time) needed by unsteady analysis. The most efficient approach is the pseudo-transient. All
the other software will simulate the whole-time domain while the CFD will analyze only few operating points
supposing the flow-field (and the thermal one) as stationary. This approach, although simplified, is justified by
the different time-responses of the fluid behavior and the thermal behavior of solid parts: the evolution of the
flow-field is far way more rapid than the temperature change of a component, so, till the scope of the simulation
is the thermal management, the high-frequency aerodynamic changes can be neglected (the optimization of the
number of CFD analysis is in the scope of the project).

Two kinds of pseudo-transient approaches are reasonable,

 Co-simulation (On-the-fly): 1D and the 3D thermal solver perform transient analysis exchanging data
every time-step (e.g. heat loss of the battery from 1D to 3D, coolant fluid temperature and mass-flow at
the inlet of the battery from 3D to 1D). The convection properties are updated at specific times (the CFD
model receives the temperatures of all the surfaces coming from the 3D thermal simulation and after
the run returns H and T of the fluid). All the solvers have to be frozen waiting for the CFD solution to be
computed. This approach to be successful, all the software must be run on the HPC so they have to be
compatible with Linux.
Another strategy would be to manage the workflow through an external software (e.g. ModeFrontier)
that controls the exchange of data among the different software and their execution. In this way a
multiple environment could be supported (e.g. PC window for 1D and HPC Linux for 3D).

GA # 769506 43 / 48
D3.1 – Standardized model integration - PU

 Off-line simulation: this is a more approximated approach and need to have at least one loop. The main
advantage is an easier interaction among software, a limitation of constraints and the 1D-3D
decoupling. The counterpart is an increase of approximation of the physics of the problem and a
reduced accuracy. A possible workflow could start with the execution of the 0D-1D model of the whole
vehicle, data (as power electronics heat dissipation and coolant mass flow) are exported and used by
the 3D thermal analysis. At the end of the 3D analysis some data could be exported to the mono-
dimensional model to update and re-run the simulation

GA # 769506 44 / 48
D3.1 – Standardized model integration - PU

5 Conclusions
After reviewing available simulation tools interfaces and especially their capabilities to communicate between
them, the FMI 2.0 have been selected to ensure good communication between models. Real-time capability has
also been highlighted because some models must contain scalable components running on real-time platform
for control calibration and validation.

Then port typing convention have been established for electric components (E-motor, inverter and battery),
which will be modeled in detailed in the WP2 in OBELICS project, and also for additional components to be fully
integrated in EV architectures. Model management have to be correctly ensured. So a subsystem identity card
has been proposed to fasten model sharing.

Then description of different computation approaches have been described especially in term of model
reduction, co-simulation heterogeneous integration or HPC to validate complex simulation integration during
the complete design cycle.

Figure 5-1: OBELICS model based development concept to reduce development and testing efforts.

Common interface, standard component input /output and dedicated computation approaches will allow the
virtual integration standardization to help reducing design process by up to 40 % (see Figure 5-1).

GA # 769506 45 / 48
D3.1 – Standardized model integration - PU

6 Abbreviations and definition

AC Alternative Current
DC Direct Current
EV Electric Vehicle
FMI Functional Mock-up Interface
FMU Functional Mock-up Unit
GSP Global Simulation Platform
GSPDB Global Simulation Platform DataBase
HiL Hardware In the Loop
HMI Human-Machine Interface
HPC High Performance Computing
HV High Voltage
HVAC Heating, Ventilation & Air Conditioning
IM Induction machine
ITEA Information Technology for European Advancement
LV Low Voltage
MiL Model In the Loop
NN Neural Network
PMSM Permanent Magnet Synchronous Machines
RSM Response Surface Methodology
SiL Software In the Loop
VMA Vehicle Modular Architecture
WRSM Wound Rotor Synchronous Motor

GA # 769506 46 / 48
D3.1 – Standardized model integration - PU

7 Risk Register

7.1 Risk register

No new risks were identified.

GA # 769506 47 / 48
D3.1 – Standardized model integration - PU

8 Bibliography
Benedikt, M., & Hofer, A. (2013). Guidelines for the Application of a Coupling Method for Non-iterative Co-

simulation. 2013 8th EUROSIM Congress on Modelling and Simulation, (pp. 244-249). Cardiff.
Benedikt, M., Zehetner, J., Watzenig, D., & Bernasch, J. (2011). Modern coupling strategies – is co-simulation

controllable? In NAFEMS (Ed.), The Role of CAE in System Simulation. Wiesbaden, Germany.
Blochwitz, T. (2014). New Features of FMI 2.0 and beyond. 10th International Modelica Conference. Lund

Sweden.
Blochwitz, T., & Otter, M. (2011). The Functional Mockup Interface for Tool independent Exchange of Simulation

Models. 8th International Modelica Conference 2011. Dresden, Germany.
C. Ricci, P. M. (2014). ASTERICS D1.2: methodology to identify Design goals based on real life data trhough

preliminary model building.
J. Lim, a. (2016). Origin and hysteresis of lithium compositional spatiodynamics within battery primary particles,.

Science. 353,, 566-571.
Model.CONNECT™ User Manual. (n.d.).
R. Malik, A. A. (2013). Journal of The Electrochemical Society., A3179-A3197.
Stettinger, G., Benedikt, M., Thek, N., & Zehetner, J. (2013). On the difficulities of real-time co-simulation. V

International Conference on Computational Methods for Coupled Problems in Science and Engineering,
COUPLED PROBLEMS 2013. Ibiza, Spain.

The Functional Mock-up Interface Standard. (n.d.). Retrieved from http://fmi-standard.org/downloads/
Thielboger, H. (2017). IMPROVE: Digital modelling for EV optimization. ASIM. Kassel.
W. Dreyer, a. (2010). Nature Materials. 9,, 448-453.

GA # 769506 48 / 48
D3.1 – Standardized model integration - PU

9 Acknowledgement

The author(s) would like to thank the partners in the project for their valuable comments on previous drafts and
for performing the review.

Project partners:
Partner
no.

Partner organisation name Short Name

1 AVL List GmbH AVL
2 Centro Richerche Fiat SCpA CRF
3 FORD Otomotiv Sanayi Anonim sirketi FO
4 Renault Trucks SAS RT-SAS
5 AVL Software and Functions GmbH AVL-SFR
6 Robert Bosch GmbH Bosch
7 SIEMENS INDUSTRY SOFTWARE NV SIE-NV
8 SIEMENS Industry Software SAS SIE-SAS
9 Uniresearch BV UNR
10 Valeo Equipements Electroniques Moteurs Valeo
11 Commissariat à l’Energie Atomique et aux Energies

Alternatives
CEA

12 LBF Fraunhofer FhG-LBF
13 FH Joanneum Gesellschaft M.B.H. FHJ
14 National Institute of Chemistry NIC
15 University Ljubljana UL
16 University Florence UNIFI
17 University of Surrey US
18 Das Virtuelle Fahrzeug Forschungsgesellschaft mbH VIF
19 Vrije Universiteit Brussel VUB

Copyright ©, all rights reserved. This document or any part thereof may not be made public or disclosed, copied or otherwise
reproduced or used in any form or by any means, without prior permission in writing from the OBELICS Consortium. Neither
OBELICS Consortium nor any of its members, their officers, employees or agents shall be liable or responsible, in negligence or
otherwise, for any loss, damage or expense whatever sustained by any person as a result of the use, in any manner or form, of any
knowledge, information or data contained in this document, or due to any inaccuracy, omission or error therein contained.

All Intellectual Property Rights, know-how and information provided by and/or arising from this document, such as designs,
documentation, as well as preparatory material in that regard, is and shall remain the exclusive property of the OBELICS
Consortium and any of its members or its licensors. Nothing contained in this document shall give, or shall be construed as giving,
any right, title, ownership, interest, license or any other right in or to any IP, know-how and information.

This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant
agreement No 769506.

The information and views set out in this publication does not necessarily reflect the official opinion of the European Commission.
Neither the European Union institutions and bodies nor any person acting on their behalf, may be held responsible for the use
which may be made of the information contained therein.

