

Optimization of scalaBle rEaltime modeLs and functIonal testing for e-drive ConceptS

EUROPEAN COMMISSION Horizon 2020 GV-07-2017 GA # 769506

Deliverable No.	OBELICS D5.5	
Deliverable Title	Report on costing model development regarding battery assessment metrics	
Deliverable Date	2019-02-28	
Deliverable Type	REPORT	
Dissemination level	Confidential (CO), only for members of the consortium	
Written By	Martin Zaversky (AVL), Lukas Janschitz (AVL), Ahu Ece Hartavi Karci (US), Abhishek Shah Alias Sangani (US)	2020-02-27
Reviewed by	Jürgen Nuffer (LBF) Miran Gaberscek (NIC) Hellal Benzaoui (VOLVO)	2020-03-26 2020-03-01 2020-03-04
Approved by	Horst Pfluegl (AVL)	2020-03-31
Status	Release Version after review corrections	

Change log:

No	Who	Description	Date
0.1	Martin Zaversky	Template created	2020-02-04
0.2	Ahu Ece Hartavi Karci	US Inputs: COCOMO applied to BMS software	2020-02-10
0.3	Lukas Janschitz	AVL Inputs: comparable product costing	2020-02-14
0.4	Martin Zaversky	Executive summary, formatting, merging	2020-02-20
0.5	Jürgen Nuffer	Internal review EP leader finished	2020-02-25
0.6	Ahu Ece Hartavi Karci	Inputs based on the internal review	2020-02-26
0.7	Martin Zaversky	Conclusion section added, updated Exec summary	2020-02-27
		and detail correction (figure references,)	
0.8	Ahu Ece Hartavi Karci	Inputs based on the internal review (v2)	2020-03-10
0.9	Martin Zaversky	Corrections based on Gaberscek and Benzaoui	2020-03-12
		review	
1.0	Lukas Janschitz	Corrections based on Gaberscek and Benzaoui	2020-03-16
		review	
1.1	Martin Zaversky	Release Version after all review corrections	2020-03-17
1.2	2 Jürgen Nuffer Added missing Ref #12		2020-03-26

2 Publishable Executive Summary

This document is the 5th of in all seven deliverables in WP 5. In this deliverable the cost modelling contribution to the overall OBELICS goal of an improved development process by 25% in time and effort shall be covered. In technical development the aspect of product cost is a decisive factor that must be considered in early design phases in order to do the right decisions in concept phase. This frontloading approach shall be strengthened by new OBELICS concepts. By developing a consistent costing approach that is focused on comparability of battery designs the technical development shall be supported and cost impact of design decisions made transparent. In standard costing approaches the boundary conditions in terms of yearly production numbers and different supplier structures obscure the clear comparability of different technical solutions as to be read in section 5.1.2. The arising question is, if there is a method that can clearly separate the cost of production and technical development from other economic topics like production scale and supplier structure. Therefore, these boundary conditions are normalized in order to get a clearer view onto cost effects of different traction battery designs as shown on three real world examples. With this concept it is shown that the resulting normalized cost model is a valuable tool in order to do informed and efficient design decisions for new developments.

Another hard to estimate part of development cost is the SW-programming of battery management systems. In section 5.2 the estimation tool COCOMO (Constructive Cost Model) is applied to the safety relevant field of battery management system (BMS) software (SW). With this tool it is shown how to get a clearer picture of software cost and which impact different boundary conditions like safety have upon software development effort.

The two proposed methods are enabling efficient assessment of technical concepts in early design phases regarding their implementation cost. The efficiency of technical development is therefore increased as too expensive solutions for a technical problem can be sorted out earlier.

10 Acknowledgement

The author(s) would like to thank the partners in the project for their valuable comments on previous drafts and for performing the review.

Project partners:

Partner	Partner organisation name	Short Name
no.		
1	AVL List GmbH	AVL
2	Centro Richerche Fiat SCpA	CRF
3	FORD Otomotiv Sanayi Anonim sirketi	FO
4	Renault Trucks SAS	RT-SAS
5	AVL Software and Functions GmbH	AVL-SFR
6	Robert Bosch GmbH	Bosch
7	SIEMENS INDUSTRY SOFTWARE NV	SIE-NV
8	SIEMENS Industry Software SAS	SIE-SAS
9	Uniresearch BV	UNR
10	Valeo Equipements Electroniques Moteurs	Valeo
11	Commissariat à l'Energie Atomique et aux Energies	CEA
	Alternatives	
12	LBF Fraunhofer	FhG-LBF
13	FH Joanneum Gesellschaft M.B.H.	FHJ
14	National Institute of Chemistry	NIC
15	University Ljubljana	UL
16	University Florence	UNIFI
17	University of Surrey	US
18	Das Virtuelle Fahrzeug Forschungsgesellschaft mbH	VIF
19	Vrije Universiteit Brussel	VUB

Copyright ©, all rights reserved. This document or any part thereof may not be made public or disclosed, copied or otherwise reproduced or used in any form or by any means, without prior permission in writing from the OBELICS Consortium. Neither OBELICS Consortium nor any of its members, their officers, employees or agents shall be liable or responsible, in negligence or otherwise, for any loss, damage or expense whatever sustained by any person as a result of the use, in any manner or form, of any knowledge, information or data contained in this document, or due to any inaccuracy, omission or error therein contained.

All Intellectual Property Rights, know-how and information provided by and/or arising from this document, such as designs, documentation, as well as preparatory material in that regard, is and shall remain the exclusive property of the OBELICS Consortium and any of its members or its licensors. Nothing contained in this document shall give, or shall be construed as giving, any right, title, ownership, interest, license or any other right in or to any IP, know-how and information.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 769506.

The information and views set out in this publication does not necessarily reflect the official opinion of the European Commission. Neither the European Union institutions and bodies nor any person acting on their behalf, may be held responsible for the use which may be made of the information contained therein.