

Optimization of scalaBle rEaltime modeLs and functIonal testing for e-drive ConceptS

EUROPEAN COMMISSION

Horizon 2020 GV-07-2017 GA # 769506

Deliverable No.	OBELICS D1.2	
Deliverable Title	Reference use cases, requirements and metrics for battery	
	design & testing	
Deliverable Date	2018-06-30	
Deliverable Type	REPORT	
Dissemination level	Confidential	
Written By	Benjamin Zillman (Bosch)	2018-08-17
	Jürgen Nuffer (LBF)	
	Vincent Heiries (CEA)	
	Ngoc Anh Nguyen (AVL)	
	Vishwasri Ramaka (AVL)	
	Werner Bergmayr (AVL)	
Reviewed by	Caner Harman (FO)	2018-08-20
	Mathieu Sarrazin (SIE-NV)	
Approved by	Horst Pfluegl (AVL) – Project Coordinator	2018-08-24
Status	Final	2018-08-30

Publishable Executive Summary

The HV battery forms a key component of the electric powertrain. Testing and development of the battery is a time consuming process and needs about 2 to 5 years from concept to production phase. Accelerating this development process would therefore quicken the production of the vehicle. Adoption of model-based battery development methods reduces the effort and time and consequently increases efficiency of battery production.

The document provides a detailed description of three industrial prospective uses cases from Tier 1 supplier and research institutes defined as the reference use cases of cluster 3 "Battery design and testing for improved safety and reliability". Main purpose of this cluster 3 is the improvement of safety by taking the electrical and the mechanical reliability into account. This cluster targets to reach within objectives of OBELICS: increased safety of battery system by a factor of 10 and reduction in development and testing efforts for battery systems by 40%.

This cluster supports the development of methods to increase the safety from cell level to pack level, especially from an industrial point of view. The demonstration of the methods to a certain use case will help to understand the application and will support the development the next generation of batteries for electrified passenger cars.